

The **Clemson Composites Center** is a research, innovation and development facility with state-of-the-art equipment and infrastructure needed to develop, transform and commercialize cost-effective, efficient and sustainable technologies related to all aspects of composites and lightweight materials design, processing, manufacturing, characterization and testing.

Research

Advanced research focuses across multiple disciplines, including CFRP composites, IloT-enabled composites 4.0, multi-material manufacturing & joining, ultra-lightweight foams and composites informatic.

Product Development

Product development with a systems approach, including lightweighting strategy analysis at vehicle level, benchmarking, and plant layout design and virtual manufacturing simulation.

Manufacturing

Realize your product with our state-of-the-art manufacturing equipment, including manual, and automated injection, compression, forming and continuous processes.

Testing

Validate your product with our material characterization testing and database generation, sub-assembly testing and validation, component testing, and mechanical property testing.

Complete Path from concept to product launch:

An investigative hub for fundamental **Research**

An engineering center for technology **Innovation**

A prototyping center for composites application **Development**

A teaching hub for distinctive workforce training and **Education**

Infrastructure Data

Vision

To be the premier and preferred innovation center in the country in transforming composites through the development of cost-effective and efficient yet sustainable technologies that benefit the four key sectors of education, industry, society, and the environment.

Mission

To conduct basic and translational research; transform, develop, and rapidly transfer technologies and innovations so as to promote economic development in the state; and support Clemson University's vision to educate a highly skilled workforce.

Contact

Srikanth Pilla, PhD Robert Patrick Jenkins Endowed Professor

Founding Director, Clemson Composites Center

Phone: (864) 283-7216 Fax: (864) 2837225 Email: spilla@clemson.edu

Address

Clemson University International Center for Automotive Research

4 Research Drive Greenville, SC 29607

COMPOSITE PRODUCTION LAB

Core Technologies: HP-RTM, injection molding with MuCell, compression molding, wet compression molding, thermoforming and hybrid processes.

1000-Ton Hydraulic Press

Clamping force	800 kN
Mold opening force, max.	512 kN
Size of mold platens (h x v)	2500 mm x 1600 mm
Mold opening stroke	1000 mm
Mold height min	550 mm
Mold height max	900 mm
Max daylight	2000 mm
Hydraulic ejector - stroke	200 mm
Ejector force forward/backward	200 kN

Injection Unit

Screw diameter	100 mm
Injection pressure	1445 bar
Stoke volume	1478 Cubic cm
Shot weight, PS	13050 g
Plasticizing rate max.	115 g/s
Nominal capacity of pump motor	110 kW
Installed heating capacity	43,07 kW
Adjustable barrel heating zones	6
Dry cycle number	600 1/h
Reservoir capacity	1250 I

HP-RTM and Wet Compression Molding Doser

Nominal volumetric flow rate	8 I/min
Axial piston pump	Open circuit
Volume per revolution	6 cubic cm
High pressure filter	0.025 mm
Resin viscosity range	20 to 300 mpa*s
Measuring range (/min)	1-10 I/min
Max resin temperature	130 C
Compatible resin	Epoxy and poly-urethane
IR Heater	
Heating area	1400 mm x 1200 mm
Max temperature	600c
Heating configuration	Top only

COMPOUNDING / LAB SCALE INJECTION MOLDING LAB

Twin Screw Extruder

Screw diameter	25mm, 2-lobe
Nominal Length	1150 mm
Actual L/D	46
Screw speed	1200 rpm
Max drive power	30 kWh

Lab Scale Injection Molding

Shot Volume Max mold size

Clamping force Platen type Locating ring size Special features 67 cubic cm 300 mm x 300mm x 300 mm 30 US tons SPI (std. bolt spacing) 101.6mm Mucell integrated and tie bar-less

Twin Screw Extruder

Injection Molding Machine

PRE- AND POST-COMPOSITE FABRICATION LAB

Automated Fabric Cutting Table

Maximum work Compatible materials

Cutting head type Table surface Work & fabric fixturing Software stack Additional features 2,300 Mm x 3500 mm Prepregs, dry fabric and thermoplastic composite sheets 1" And 2" round tool and drag knife Urethane sheet or perforated masonite Vacuum suction Fibersim and auto nesting tool Heavy duty router head for plywood

Other Equipment

Cold storage for prepreg fabrics Dry fabric storage racks Post processing workbench Hand tools for composite trimming

34 Cubic ft at -10c 5' And 6' roll stand Vacuum down draft table (48" x 108") Pneumatic power tools

HP-RTM Doser

CHEMICAL CHARACTERIZATION & MICRO IMAGING

Full suite of state of the art characterization equipment

Differential Scanning Calorimeter (DSC) Dynamic Mechanical Analyzer (DMA) Thermogravimetric Analyzer (TGA) Thermomechanical Analyzer (TMA) Rheometer Fourier Transform Infrared Microscope (FTIR) TA instruments - DSC 250 TA instruments - DMAC 850 TA instruments - TGA 550 TA instruments - Q400 TA instruments - DHR 2 Bruker Tensor II

MECHANICAL CHARACTERIZATION

Universal Testing Machine

Load Cell Capacity	250 kN
Force Accuracy	Within 0.5% of the reading down to 1/100ths of the Load Cell Capacity
Alignment Accuracy	Specifications per AC7101 & AC7122
Strain Accuracy	Class B-1 or better (when supplied with an extensometer)
High Temperature Testing	Furnace capable of testing up to 350C
Testing Capabilities	Tensile (ASTM D3039 & D 638) Compression (ASTM D 6641) Flexural (ASTM D7264) V-Notched Iosipescu Shear Test (ASTM D5379) Flexural and Interlaminar Shear Bend Fixture Compression After Impact Anti-Buckling IITRI Compression Test Fixture

